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ABSTRACT: A probe technique for measuring the electrical
conductivity in a small region of an ionized flow field is
described. The technique involves observing the interaction
between an ionized gas and a small perturbing R.F. magnetic
field. The probes are basically small coils. Several probes
have been dynamically calibrated in a shocktube. A few pre-
liminary measurements were made in the wake of a 4-inch sphere
which was subjected to high-speed flight conditions.
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INTRODUCTION

During the past few years the U. S. Naval Ordnance
Laboratory has become engaged in conducting ionized wake
studies in its Hypersonic Shock Tunnel Facilities. The
procedure, ideally, was to make a point measurement of the
electrical conductivity in the wake of a model which was
subjected to high-speed flight conditions. The technique
which the authors chose to develop was that of monitoring the
interaction between the moving ionized gas and a high-frequency
perturbing magnetic field. Since the details of the probing
technique have been described in two previous reports (refs. (1)
and (2)), only a brief outline will be given below. Although
there will be a few minor changes in the probe design and the
operating circuitry, this report is of a final nature since the
authors feel that the validity of the technique has been ade-
quately demonstrated.

THEORY AND APPARATUS

The probes consist, basically, of small coils embedded in,
or wound upon ferrite cores. The ferrite is used primarily to
restrict the ,..ignetic field to a particular geometry. Figures 1
and 2 illustrate two probe configurations which are being used.

Figure 3 is a diagram of the probe coil and the associated
circuitry. The probe is excited by a one-megacycle, crystal-
controlled oscillator which is used in series with a relatively
large resistor to obtain a constant current signal. The
presence of an ionized gas passing over (or through) the probe
coil will cause a change in the impedance of the coil. The
potential change across the coil will be equal to the impedance
change, since the current is held constant. In this fashion it
is easily seen that the effect of the ionized gas is to produce
an amplitude modulation of the one-megacycle "carrier." The
remainder of the circuit is used to extract the modulation from
the carrier. The circuit has an over-all response of 100
kilocycles which means that the change in impedance of the coil
due to fluctuations in the ionized flow can be followed with a
10-microsecond response time.

A general theoretical model for the cylindrical probe is
presented in reference (1). A more primitive model is presented
in reference (2), and for the purpose of continuity is also
included as Appendix A of this paper. Both treatments yield a
relation between the potential across the probe coil and the
electrical conductivity of the ionized gas.
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In order that the probing technique not be limited by one's
ability to solve accurately the mathematical problem associated
with a particular field geometry, it was decided that a dynamic
calibration of the probes was necessary. This calibration is
accomplished in a specially designed shocktube. This shocktube
(described more completely in ref. (2)) was constructed of stain-
less steel in order to minimize the impurity level. To reduce
the boundary layer in the test section, an annular dump region
is provided Just upstream of the testing region (see figs. 4
and 5). The probe is mounted on a sting Just downstream of a
70 Kni zniiurowavu interferometer which is used to obtain the
electron density of the ionized air (see fig. 6). A range of
conditions for the shock-heated air was obtained by varying
the initial pressure and shock velocity.

CALIBRATION RESULTS

Several of the wedge-type probes have been calibrated in
the manner described above. Due to an oversite on the authors'
part the wedge angle was too large and a detached shock was
incurred. Since the microwave interferometer measures the
electron density in the free stream, it is difficult to use
this value to determine conditions behind the standing shock.
The authors thus chose to calculate the electrical conductivity,
in a fashion used by Dr. Lin in reference (3), using initial
pressure and shock velocity as a starting point. The temperature
and density ratios across the standing shock were obtained from
reference (4), the particle densities from reference (5), and
the collision cross sections from reference (6). Figure 7 is a
typical calibration curve for one of the wedge-type probes. The
vertical scale (probe signal) is the amplitude of the signal as
displayed on the oscilloscope. Some of the scatter of the data
points is attributed to fluctuations in the standing shockwave
which will amplify any flow irregularities.

The new generation of probes will have a wedge angle
sufficiently small to insure an attached shock below the probe.
Since the probe will then be sensing the free-stream region, a
direct comparison with the interferometer will be possible.
Figure 8 iEs a selection of traces from the calibration run on
one of the probes. The oscilloscope is triggered about 100
microseconds before the shock arrives at the probe position.
There Is an.anomalous spike, which occurs during this 100
microseconds, which the authors are unable to explain. The
extra marks on the photographs were made by the authors when
reading the data. A large percent of the irregularities and
over-all slantedness of the traces is attributed to noise.

2
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SHOCK-TUNNEL TEST

Several test shots were made in the 1.5-in. Hypersonic
Shock Tunnel No. 1 to see whether a measurement could be
performed with the conductivity probe. The probe was placed in
the wake of a 4-inch sphere (see fig. 9). Since only qualitative
results were sought from these initial tests, no attempt was
made to align the probe with the flow streamlines.

.... rs. Q .. a .robe trace an a schli.iei' prhutO-rgraph of
a typical shot. The fact that the probe is not aligned with
a streamline is confirmed by an attached shockwave on top of
the wedge. The sphere was flying at simulated conditions of
Mach 8 at an altitude of 125,000 feet.

Figure 10 displays two probe traces from two different
shots. The flight conditions for the sphere were Mach 8 at
an altitude of 50,000 feet for both shots. Repeatability is
indicated. The excessive noise on the upper trace was due
to a loose cable cover plate inside the tunnel which was
discovered after the shot.

The flow duration indicated on the probe traces in
figures 9 and 10 checks very closely with those predicted from
aerodynamic calculations.

DISCUSSION

The lower lim t of sensitivity of the probes described
above is about 10-4 mhos/cm. This limit is set, basically,
by hhe signal-to-noise ratio (i.e., a signal representing
10 mhos/cm represents a modulation of only about .02 percent).
There is no upper limit of sensitivity. It is, however, very
difficult to distinguish between lO5 and 106 mhos/cm since
both yield about 100 percent modulation on the carrier.

As soon as the new generation of probes has been calibrated,
the probes will be used to determine the radial and axial
variation of the electrical conductivity in the wake of various
models at various flight conditions. It is also anticipated
that coils will be embedded in the models themselves so that the
conductivity of the ionized gas surrounding the model can be
determined.

3
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FIG. I CROSS-SECTIONAL VIEW OF CONDUCTIVITY
PROBES
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FIG. 5 THE 5-IN. SHOCKTUBE
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SHOT• 229

Pi = 0,1 torr

Ms= 12.2
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Pl= 1.0 torr

Ms= 9.3
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Ms= 9.2
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SPi= 7.0 torr
.0 D Ms= 9.0

TIME
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FIG. 8 PROBE TRACES TAKEN DURING A
CALIBRATION RUN.
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R.F. CONDUCTIVITY PROBE
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_____ _____ ____ TIME
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FIG. 9 SCHLIEREN PHOTOGRAPH AND PROBE
TRACE OF A WAKE CONDUCTIVITY TEST
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FIG. 10 PROBE TRACES OF TWO WAKE
CONDUCTIVITY TESTS, REPEAT-
ABILITY IS INDICATED.
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APPENDIX A

A detailed calculation relating the impedance of a solenoid
as a function of the excitation frequency f and the electrical
conductivity C- of the core is given in reference (2). Rather
than repeating this information, it is instructive to consider
the special case when the product f 0- is sufficiently large
that the skin depth of field penetration J is small compared
to the core radius ? (see fig. 9). It is further assumed
that although the gas is in motion, the frequency is high enough
to effectively stop this motion. Since the field penetration is
-l coniparcd to t... . ..u., one can consiaer mnat tne inauced

current flows in the thin cylindrical shell oif width 5 . The
resistance R' of this shell is given by

/ 2'r
R =(Al)

where 2 • r is the length of the current path, L 6 is the
cross-sectional area, and -Y is the electrical conductivity.
Since the skin depth is given by

77- ;ý,CJ-v/ (A2)

equation (Al) becomes

The geometry of this shell in relation to the excitation
coil suggests that one can make use of a transformer analog,
Where the ionized gas is represented by a one-turn secondary
with a load impedance R' (see fig. 10). A convenient equivalent
circuit for the transformer is simply an impedance equal to the
load impedance times the turns ratio squared. The probe impedance
is thus

/ /f) (A4)

Since the current I is held constant the magnitude of the potential
across the coil V is given by

A-1
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I- V1 I 7' 7- ; (A5)

Equation (A4) is found to be fairly accurate for skin
depth. as large as 0.3 r . The more general result derived
in reference (1) makes no assumptions of f or (

A-P
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